CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111

2/2022fa/

Today: object-oriented programming


https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
Last time

@)

Object-oriented programming

Today

O
O

One last image thing
Object-oriented programming
m Methods other than the constructor
m Overloading/overriding functions/methods

Announcements

@)

Exercise tomorrow will be half OOP and the other half with be an image
question...
Project 5 due Monday 11/14
Prelim 2 this Thursday!

m tutoring (sign up on CMS) Tuesday 11/8 - Wednesday 11/9

m Review session Wednesday 11/9 6:30 — 8pm in Thurston Hall room 203
Apply by November 14th if you would like to be a consultant for this class!
For assignments and exams, only use function and MATLAB keywords that you
have been taught in this course

m Especially do not use break, continue, try, catch, switch, return



Mistake on lec 17 slides e ‘

Matrix storing pixel

img = imread('ManTakingPhoto.png"'); VameS(ﬁ[ﬂock\\
imgBlur = zeros(size(img));
imgBlur = uint8(imgBlur); 56 75 39 96 94

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283

row = 252; col = 283; 25 109 158 245 237
block = img(row-2:row+2, col-2:col+2);

32 65 46 74 34

224 235 224 226 234
avgPixel = 0;
for i = 1l:size(block,1)
for j = 1l:size(block,?2)

254 255 251 242 247

avgPixel = avgPixel + block(i,j);™
end Error in lecture 17 slides (fixed now):
end avgPixel starts off as double but becomes unit8
after this line. uint8 only stores integers between 0
numPixels = size(block,1)*size(block,2); and 255.

imgBlur(row,col) = avgPixel/numPixels;
Could have overflow (we could need avg




How to deal with this problem? - solution 1

img = imread('ManTakingPhoto.png");

imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283

row = 252; col = 283;

block = img(row-2:row+2, col-2:col+2);

numPixels = size(block,1)*size(block,2);

avgPixel = 0;
for i = 1l:size(block,1)
for j = 1l:size(block,2)
avgPixel = avgPixel + block(i,j)l/numPixels}

end

end

imgBlur(row,col) = avgPixel;

Divide by numPixels before
you add



How to deal with this problem? - solution 2

img = imread('ManTakingPhoto.png");

imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283

row = 252; col = 283;

block = img(row-2:row+2, col-2:col+2);

Turn the uint8 number into a double
so avgPixel stays a double and you
won’t have to worry about overflow

avgPixel = 0;
for i = 1:size(block,1)
for j = 1:size(block,?2)
avgPixel = avgPixel + |doublelblock(i,j));

end
end

numPixels = size(block,1)*size(block,2);
imgBlur(row,col) = avgPixel/numPixels;



Review of OOP

Class: template that specifies a
custom type

Object: an instance of a class

Constructor: Special method that
returns the handle of an object

% construct an object of class interval
I1 = Interval(1,5);

% access a property of the object
r = Il.right;

% Apply a method on the object
I1l.scale(3); % scale object by 3

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right
end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object
Inter.left = 1t;
Inter.right = rt;
end

function scale(self,f)
% scale the interval by factor f
w = self.right - self.left;
self.right = self.left + w*f;
end
end
end



Methods other than the constructor

In the function def, should always have
an an object handle as first input®

Call it self.

The other inputs can be anything
(handles for other object, doubles,
arrays, ...).

To call the method:

I2 = Interval(0,1);
12.scale(5) function scale(self,f)
% scale the interval by factor f
w = self.right - self.left;
self.right = self.left + w*f;
end

*methods without object handle as first input would be called a
static method.



Methods other than the constructor

objHandle .methodName (inputParam2, inputParam3,

To call the method:

I2 = Interval(0,1);
I2.scale(5)

What happens when we call this function?
Self stores handle to 12
f stores the value 5
w=1-0-=1
right prop of object becomes @ + 5*1

disp(I2)
% interval with properties:
left: ©
right: 5

.., 1lnputParamN)

function scale(self,f)
% scale the interval by factor f
w = self.right - self.left;

self.right = self.left + w*f;
end



Method to find overlap between two intervals

==




Method to find overlap between two intervals

In each of the overlapping cases, | can set
left = max(red.left, blue.left);
right = min(red.right, blue.right);
intervalOverlap = Interval(left, right);



Method to find overlap between two Intervals

function Inter = overlap(self, other)

% Inter 1s overlapped Interval between self
% and the other Interval. If no overlap then
% Inter is empty array of class Interval.

end



Method to find overlap between two Intervals

function Inter = overlap(self, other)
% Inter 1s overlapped Interval between self
% and the other Interval. If no overlap then
% Inter is empty array of class Interval.
Inter = Interval.empty();
left = max(self.left, other.left);
right = min(self.right, other.right);
if right-left > ©
Inter = Interval(left, right);
end
end



Method to find overlap between two Intervals

function Inter = overlap(self, other)
% Inter is overlapped Interval between self

% and the other Interval. If no over en
% Inter is empty array o s Interval.

Inter = Interval.empty();
left = max(self.left, other.left);
right = min(self.right, other.right);
if right-left > ©

Inter = Interval(left, right);
end
end

Built-in function to create an
empty array of the specified
class




Method to find overlap between two Intervals

function Inter = overlap(self, other)
% Inter is overlapped Interval between self
% and the other Interval. If no overlap then
% Inter is empty array of class Interval.
Inter = Interval.empty();
left = max(self.left, other.left);
right = min(self.right, other.right);
if right-left > ©

Inter = Interval(left, right);
end
end

Let’s look up the
documentation for isempty




Overriding built-in functions

e You can change the behavior of a built-in function for an object of a class by

implementing a function of the same name in the class definition
o Called overriding (called overloading in MATLAB documentation)
e Atypical built-in function to override is disp

% Without overriding the disp function % Overriding the disp function with your
own display method

I3 = Interval(5,6); I3 = Interval(5,6);

disp(I3) disp(I3)

Command Window

Command Window
>> I3 = Interval(5,6);

>> I3.disp () >> I3 = Interval(5,6);
Interval with properties: >> I3.disp()
(5.000000,6.000000)
left: 5 Jx>>
right: 6
P You will write your own disp method in the
X >>

Interval class def tomorrow!



Let’s talk about arrays of object (actually, array of

references to objects)

A = Interval(3,7);

A 167.32

177.54

A(2) = Interval(4,6);
167.32
A(3) = Interval(1,9); left | 3
right 7
interval()
scale()

left 4

right 6

interval()

scale()

177.54 179.59

179.59

left 1
right 9
interval()

scale()




Constructor should be able to handle call with no inputs

A = Interval(3,7); Properties
A(2) = Interval(4,6); " et
A(3) = Interval(1,9);
methods
[A(S) = Inter‘val(2,5);] function Inter = Interval(lt, rt)
Error! % constructor: construct an Interval
% object

Inter.left = 1t;

Why is there an error? The Interval constructor Inter.right = rt;
0 >

requires two input parameters end
The user specified 2 inputs for A(5), but... function scale(self,f)
% scale the interval by factor f
In order to assign A(4), MATLAB has to make w = self.right - self.left;
an interval—call the constructor—but with no self.right = self.left + w*f;
values for the arguments — Error! ; end
en

end



Function overloading

Problem: the empty constructor
passes 0 inputs but our constructor
requires 2 input arguments.

Solution: need a new keyword that
allows us to write the constructor
to work with variable numbers of
input arguments

MATLAB'’s solution: nargin

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right
end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object
Inter.left = 1t;
Inter.right = rt;
end

function scale(self,f)
% scale the interval by factor f
w = self.right - self.left;
self.right = self.left + w*f;
end
end
end



Examples of function overloading

* plOt(X)y): plOt(X:lem'*l)

Plot works with 2 inputs or 3

inputs (or even more) We need our constructors to work

for variable numbers of inputs. We
can do this using the nargin
keyword

e rand(), rand(2), rand(1,3)

rand works with O inputs, 1
input, 2 inputs, ...



