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Agenda and announcements
● Last time

○ Object-oriented programming
● Today

○ One last image thing
○ Object-oriented programming

■ Methods other than the constructor
■ Overloading/overriding functions/methods

● Announcements
○ Exercise tomorrow will be half OOP and the other half with be an image 

question…
○ Project 5 due Monday 11/14
○ Prelim 2 this Thursday!

■ tutoring (sign up on CMS) Tuesday 11/8 - Wednesday 11/9
■ Review session Wednesday 11/9 6:30 – 8pm in Thurston Hall room 203

○ Apply by November 14th if you would like to be a consultant for this class!
○ For assignments and exams, only use function and MATLAB keywords that you 

have been taught in this course
■ Especially do not use break, continue, try, catch, switch, return 



Mistake on lec 17 slides
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around 
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + block(i,j);

end
end

numPixels = size(block,1)*size(block,2);

imgBlur(row,col) = avgPixel/numPixels;

Error in lecture 17 slides (fixed now): 
avgPixel starts off as double but becomes unit8 
after this line. uint8 only stores integers between 0 
and 255.

Could have overflow (we could need avg
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How to deal with this problem? - solution 1
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around 
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);
numPixels = size(block,1)*size(block,2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + block(i,j)/numPixels;

end
end

imgBlur(row,col) = avgPixel;

Divide by numPixels before 
you add



How to deal with this problem? - solution 2
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around 
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + double(block(i,j));

end
end

numPixels = size(block,1)*size(block,2);

imgBlur(row,col) = avgPixel/numPixels;

Turn the uint8 number into a double 
so avgPixel stays a double and you 
won’t have to worry about overflow



Review of OOP
Class: template that specifies a 
custom type

Object: an instance of a class

Constructor: Special method that 
returns the handle of an object

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

% construct an object of class interval
I1 = Interval(1,5);

% access a property of the object
r = I1.right;

% Apply a method on the object
I1.scale(3);    % scale object by 3



In the function def, should always have 
an an object handle as first input*

Call it self.

The other inputs can be anything 
(handles for other object, doubles, 
arrays, …).

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Methods other than the constructor

To call the method:

I2 = Interval(0,1);
I2.scale(5) 

*methods without object handle as first input would be called a 
static method.



classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Methods other than the constructor

To call the method:

I2 = Interval(0,1);
I2.scale(5) 

objHandle.methodName(inputParam2, inputParam3, ..., inputParamN)

What happens when we call this function? 
Self stores handle to I2 
f stores the value 5
w = 1 - 0 = 1
right prop of object becomes 0 + 5*1

disp(I2)
% interval with properties:

left: 0
right: 5



Method to find overlap between two intervals



Method to find overlap between two intervals

In each of the overlapping cases, I can set 
left = max(red.left, blue.left);
right = min(red.right, blue.right);
intervalOverlap = Interval(left, right);



Method to find overlap between two Intervals

function Inter = overlap(self, other) 

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0 

Inter = Interval(left, right);

end

end



Method to find overlap between two Intervals

function Inter = overlap(self, other) 

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0 

Inter = Interval(left, right);

end

end



Method to find overlap between two Intervals

function Inter = overlap(self, other) 

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0 

Inter = Interval(left, right);

end

end

Built-in function to create an 
empty array of the specified 
class

% Example use of the overlap function
I1 = Interval(3,7);
I2 = Interval(4, 4+rand*5);
X = I1.overlap(I2);
if ~isempty(X)

fprintf('(%f,%f)\n', X.left,X.right)
end



Method to find overlap between two Intervals

function Inter = overlap(self, other) 

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0 

Inter = Interval(left, right);

end

end

% Example use of the overlap function
I1 = Interval(3,7);
I2 = Interval(4, 4+rand*5);
X = I1.overlap(I2);
if ~isempty(X)

fprintf('(%f,%f)\n', X.left,X.right)
end

Let’s look up the 
documentation for isempty



Overriding built-in functions
● You can change the behavior of a built-in function for an object of a class by 

implementing a function of the same name in the class definition
○ Called overriding (called overloading in MATLAB documentation)

● A typical built-in function to override is disp

% Without overriding the disp function

I3 = Interval(5,6);
disp(I3)

% Overriding the disp function with your 
own display method
I3 = Interval(5,6);
disp(I3)

You will write your own disp method in the 
Interval class def tomorrow!



Let’s talk about arrays of object (actually, array of 
references to objects)

A = Interval(3,7);
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A = Interval(3,7);

A(2) = Interval(4,6);

A(3) = Interval(1,9);

A(5) = Interval(2,5);

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Error!

Why is there an error? The Interval constructor 
requires two input parameters

The user specified 2 inputs for A(5), but…

In order to assign A(4), MATLAB has to make 
an interval–call the constructor–but with no 
values for the arguments → Error!

Constructor should be able to handle call with no inputs



Function overloading

Problem: the empty constructor 
passes 0 inputs but our constructor 
requires 2 input arguments.

Solution: need a new keyword that 
allows us to write the constructor 
to work with variable numbers of 
input arguments

MATLAB’s solution: nargin

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end



Examples of function overloading

● plot(x,y), plot(x,y,'m-*')

Plot works with 2 inputs or 3 
inputs (or even more)

rand works with 0 inputs, 1 
input, 2 inputs, …

We need our constructors to work 
for variable numbers of inputs. We 
can do this using the nargin 
keyword

● rand(), rand(2), rand(1,3)


