
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: object-oriented programming

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Object-oriented programming
● Today

○ One last image thing
○ Object-oriented programming

■ Methods other than the constructor
■ Overloading/overriding functions/methods

● Announcements
○ Exercise tomorrow will be half OOP and the other half with be an image

question…
○ Project 5 due Monday 11/14
○ Prelim 2 this Thursday!

■ tutoring (sign up on CMS) Tuesday 11/8 - Wednesday 11/9
■ Review session Wednesday 11/9 6:30 – 8pm in Thurston Hall room 203

○ Apply by November 14th if you would like to be a consultant for this class!
○ For assignments and exams, only use function and MATLAB keywords that you

have been taught in this course
■ Especially do not use break, continue, try, catch, switch, return

Mistake on lec 17 slides
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + block(i,j);

end
end

numPixels = size(block,1)*size(block,2);

imgBlur(row,col) = avgPixel/numPixels;

Error in lecture 17 slides (fixed now):
avgPixel starts off as double but becomes unit8
after this line. uint8 only stores integers between 0
and 255.

Could have overflow (we could need avg

56 75 39 96 94

32 65 46 74 34

25 109 158 245 237

224 235 224 226 234

254 255 251 242 247

Block

Matrix storing pixel
values of block

How to deal with this problem? - solution 1
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);
numPixels = size(block,1)*size(block,2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + block(i,j)/numPixels;

end
end

imgBlur(row,col) = avgPixel;

Divide by numPixels before
you add

How to deal with this problem? - solution 2
img = imread('ManTakingPhoto.png');
imgBlur = zeros(size(img));

imgBlur = uint8(imgBlur);

% assuming we are finding the average pixel value around
% the pixel in the row 252 and column 283
row = 252; col = 283;
block = img(row-2:row+2, col-2:col+2);

avgPixel = 0;
for i = 1:size(block,1)

for j = 1:size(block,2)
avgPixel = avgPixel + double(block(i,j));

end
end

numPixels = size(block,1)*size(block,2);

imgBlur(row,col) = avgPixel/numPixels;

Turn the uint8 number into a double
so avgPixel stays a double and you
won’t have to worry about overflow

Review of OOP
Class: template that specifies a
custom type

Object: an instance of a class

Constructor: Special method that
returns the handle of an object

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

% construct an object of class interval
I1 = Interval(1,5);

% access a property of the object
r = I1.right;

% Apply a method on the object
I1.scale(3); % scale object by 3

In the function def, should always have
an an object handle as first input*

Call it self.

The other inputs can be anything
(handles for other object, doubles,
arrays, …).

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Methods other than the constructor

To call the method:

I2 = Interval(0,1);
I2.scale(5)

*methods without object handle as first input would be called a
static method.

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Methods other than the constructor

To call the method:

I2 = Interval(0,1);
I2.scale(5)

objHandle.methodName(inputParam2, inputParam3, ..., inputParamN)

What happens when we call this function?
Self stores handle to I2
f stores the value 5
w = 1 - 0 = 1
right prop of object becomes 0 + 5*1

disp(I2)
% interval with properties:

left: 0
right: 5

Method to find overlap between two intervals

Method to find overlap between two intervals

In each of the overlapping cases, I can set
left = max(red.left, blue.left);
right = min(red.right, blue.right);
intervalOverlap = Interval(left, right);

Method to find overlap between two Intervals

function Inter = overlap(self, other)

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0

Inter = Interval(left, right);

end

end

Method to find overlap between two Intervals

function Inter = overlap(self, other)

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0

Inter = Interval(left, right);

end

end

Method to find overlap between two Intervals

function Inter = overlap(self, other)

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0

Inter = Interval(left, right);

end

end

Built-in function to create an
empty array of the specified
class

% Example use of the overlap function
I1 = Interval(3,7);
I2 = Interval(4, 4+rand*5);
X = I1.overlap(I2);
if ~isempty(X)

fprintf('(%f,%f)\n', X.left,X.right)
end

Method to find overlap between two Intervals

function Inter = overlap(self, other)

% Inter is overlapped Interval between self

% and the other Interval. If no overlap then

% Inter is empty array of class Interval.

Inter = Interval.empty();

left = max(self.left, other.left);

right = min(self.right, other.right);

if right-left > 0

Inter = Interval(left, right);

end

end

% Example use of the overlap function
I1 = Interval(3,7);
I2 = Interval(4, 4+rand*5);
X = I1.overlap(I2);
if ~isempty(X)

fprintf('(%f,%f)\n', X.left,X.right)
end

Let’s look up the
documentation for isempty

Overriding built-in functions
● You can change the behavior of a built-in function for an object of a class by

implementing a function of the same name in the class definition
○ Called overriding (called overloading in MATLAB documentation)

● A typical built-in function to override is disp

% Without overriding the disp function

I3 = Interval(5,6);
disp(I3)

% Overriding the disp function with your
own display method
I3 = Interval(5,6);
disp(I3)

You will write your own disp method in the
Interval class def tomorrow!

Let’s talk about arrays of object (actually, array of
references to objects)

A = Interval(3,7);

3

7

left

right

167.32

interval()

scale()

4

6

left

right

177.54

interval()

scale()

1

9

left

right

179.59

interval()

scale()

A
A(2) = Interval(4,6);

A(3) = Interval(1,9);

167.32 177.54 179.59

A = Interval(3,7);

A(2) = Interval(4,6);

A(3) = Interval(1,9);

A(5) = Interval(2,5);

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Error!

Why is there an error? The Interval constructor
requires two input parameters

The user specified 2 inputs for A(5), but…

In order to assign A(4), MATLAB has to make
an interval–call the constructor–but with no
values for the arguments → Error!

Constructor should be able to handle call with no inputs

Function overloading

Problem: the empty constructor
passes 0 inputs but our constructor
requires 2 input arguments.

Solution: need a new keyword that
allows us to write the constructor
to work with variable numbers of
input arguments

MATLAB’s solution: nargin

classdef Interval < handle
% An interval has a left end and a right end

properties
left
right

end

methods
function Inter = Interval(lt, rt)
% constructor: construct an Interval
% object

Inter.left = lt;
Inter.right = rt;

end

function scale(self,f)
% scale the interval by factor f

w = self.right - self.left;
self.right = self.left + w*f;

end
end

end

Examples of function overloading

● plot(x,y), plot(x,y,'m-*')

Plot works with 2 inputs or 3
inputs (or even more)

rand works with 0 inputs, 1
input, 2 inputs, …

We need our constructors to work
for variable numbers of inputs. We
can do this using the nargin
keyword

● rand(), rand(2), rand(1,3)

